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Abstract

This study is motivated by the need to devise means to enhance heat transfer in configurations, like the back step, that appear in cer-
tain types of MEMS that involve fluid flow and that are not very efficient from the thermal transfer point of view. In particular, the work
described in this paper studies the effect that a prescribed flow pulsation (defined by two control parameters: velocity pulsation frequency
and pressure gradient amplitude at the inlet section) has on the heat transfer rate behind a backward facing step in the unsteady laminar
2-D regime. The working fluid that we have considered is water with temperature dependent viscosity and thermal conductivity. We have
found that, for inlet pressure gradients that avoid flow reversal at both the upstream and downstream boundary conditions, the time-
averaged Nusselt number behind the step depends on the two above mentioned control parameters and is always larger than in the
steady-state case. At Reynolds 100 and pulsating at the resonance frequency, the maximum time-averaged Nusselt number in the hor-
izontal wall region located behind the step whose length is four times the step height is 55% larger than in the steady-case. Away from the
resonant pulsation frequency, the time-averaged Nusselt number smoothly decreases and approaches its steady-state value.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, there is a large variety of Micro-Electro-
Mechanical systems (MEMS) that, in one way or another,
involve fluid flow and heat transfer effects. Practical appli-
cations of these systems include, for instance, micro-
motors, micro-cooling devices and power-MEMS. When
dealing with specific engineering design aspects, it often
happens that because of manufacturing restrictions, or
the need to keep a low product cost, channel configurations
inside this type of MEMS are far from being fully opti-
mised. For example, it is not unusual to find deep recess,
sharp bends, grooves, and both forward and backward fac-
ing step like structures inside some designs. Since the sur-
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face to volume ratio grows when the typical characteristic
length of the system diminishes, associated heat losses
could become important and corrective actions might be
implemented. In some specific cases, heat losses are so crit-
ical that new configurations need to be devised to fulfil cer-
tain objectives. For instance, micro-combustion based on
arrays of catalytic wires is being pursued actively because
thermal losses in the micro-scale may prevent combustion
to occur in the shape of a conventional stabilised flame.

The objective of this paper is to study the effect that
forced flow pulsation may have on laminar heat transfer
enhancement behind a 2-D backwards facing step. We have
chosen this configuration because it represents a broad
class of geometries to be found inside fluid-thermal
MEMS. Since we foresee liquid cooling applications, the
focus of our study is on the laminar, unsteady, incompress-
ible flow regime. For instance, if we consider a backwards
facing step whose inlet channel has an height of 225 lm
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Nomenclature

Latin symbols

a2 control parameter for pressure gradient at inlet
section

cp1 specific heat at inlet section
Dh hydraulic diameter of the inlet channel
eq_27 acronym for Eq. (27)
Gr Grashof number
g gravity constant
hx local convection coefficient behind the step
k dimensionless thermal conductivity
k0 thermal conductivity
k1 thermal conductivity at inlet section
Nux local Nusselt number behind the step
n direction normal to a surface
P dimensionless pressure
P0 pressure
Pr Prandtl number
Re Reynolds number based on Dh and u1
Red0 Reynolds number based on the Stokes thickness
RHS acronym for right hand side
t dimensionless time
t0 time
t* dimensionless pseudo-time
T dimensionless fluid temperature
T0 temperature
T1 fluid temperature at inlet section
u dimensionless horizontal velocity component
umax maximum centreline velocity in a Poiseuille type

solution
u0 horizontal velocity component

u1 mean horizontal velocity component at inlet sec-
tion

v dimensionless vertical velocity component
v0 vertical velocity component
x dimensionless horizontal co-ordinate
x0 horizontal co-ordinate
y dimensionless vertical co-ordinate
y0 vertical co-ordinate

Greek symbols
b pseudo-compressibility parameter
bexp thermal expansion coefficient
d0 stokes layer thickness
D increment
U functional approximation for the Finite Point

algorithm
k0 to k5 parameters that define the functional approxi-

mation U
l dimensionless dynamics viscosity
l0 dynamic viscosity
l1 dynamic viscosity at inlet section
m0 kinematic viscosity
q1 density at inlet section
x dimensionless pulsation frequency
x0 dimensional pulsation frequency

Superscripts

k time instant
o initial time in the integration loop
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(hydraulic diameter Dh equal to 450 lm), an step height of
225 lm, and water flows in at 293 K and 0.22 m/s, the Rey-
nolds number based on the mean inlet velocity and hydrau-
lic diameter is 100.

Also, we will concentrate on the 2-D regime because the
onset of 3-D effects is expected to occur at higher Reynolds
numbers. Armaly et al. [1] reported, based on their own
experimental data, a critical Reynolds number of 400 for
this onset. Durst and Pereira [2] found good agreement
between experimental and numerical 2-D results for Rey-
nolds numbers below 648. Kaiktsis et al. [3], by using direct
numerical simulation, suggested that the critical Reynolds
number is 700. More recently, Barkley et al. [4] have
shown, by performing a stability analysis, that the onset
of 3-D effects starts a Reynolds 997 (this figure has been
corrected to be consistent with the Reynolds number defi-
nition used in Refs. [1–3] and in the present study). Barkley
et al. [4] have also discussed in detail these discrepancies
and concluded that the reason for the rather low critical
Reynolds number (400) found by Armaly et al. [1] is the
presence of end wall effects. In particular, the span-wise
aspect ratio of their experimental set up was 36:1, while
Barkley et al. [4] considered an ideal 2-D geometry in their
computations. Summarizing, since we will consider Rey-
nolds numbers of the other of 100, we can assume that
the hypothesis of two-dimensionality is well satisfied. We
also include in our analysis the temperature dependence
of both viscosity and thermal conductivity. Water viscosity
changes by a factor of three in the temperature span rang-
ing from 293 K to 353 K that we have considered, see Incr-
opera and DeWitt [5], and that is typical of some
electronics systems cooling applications. Since flow topol-
ogy is very sensitive to the Reynolds number in the regime
that we consider, see [1,2], we decided to account for real
fluid effects from the outset.

The idea of using pulsating flows to enhance laminar
heat convection is not new although the outcome of the
many studies that have been performed up to now still
remains controversial. The situation is best summarised
in the introduction of the paper published by Yu et al. [6]
where they classify previous work into four categories
according to the conclusion being reached:



Fig. 1. Problem definition.

Fig. 2. Comparison between correlations generated for dynamic viscosity
and thermal conductivity, and experimental data.
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� Pulsation enhances heat transfer [7].
� Pulsation deteriorates heat transfer [8].
� Pulsation does not affect heat transfer [9].
� Heat transfer enhancement of deterioration may occur

depending on the flow parameters [10].

Incidentally, the authors of the review, Yu et al. [6], con-
clude from their own work that pulsation neither enhances
nor deteriorates heat flow. Recently, another study on the
subject has been published by Chattopadhyay et al. [11]
and they report that pulsation has no effect on the time-
averaged heat transfer along straight channels.

Regarding the backward facing step flow under consid-
eration, a comprehensive review of steady heat transfer
results has been published by Abu-Malaweh [12] for a wide
range of configurations and flow properties. Other recent
studies on heat transfer effects on 2-D and 3-D backward
facing step geometries have been published by Abu-Hijleh
[13], Nie and Armaly [14] and Iwai et al. [15]. In the isother-
mal case with no heat transfer effects, a detailed analysis
that addresses the different flow topologies that appear as
a function of the Reynolds number has been reported by
Chiang and Sheu [16].

Some aspects of laminar heat transfer downstream of a
back-step whit pulsating and non-pulsating inlet conditions
have been studied previously by Valencia and Hinojosa
[17]. In this paper, the authors dealt with air having con-
stant viscosity and thermal conductivity properties, and
assumed a parabolic inlet velocity profile with sinusoidal
time variation. For the case of pulsating flow, they consid-
ered the case of one Strouhal number and found this spe-
cific pulsation enhanced heat transfer by a time-averaged
factor of 9% in the lower wall when compared to the steady
flow situation. A similar study in the turbulent regime has
been reported by Valencia [18]. In this case, the changes in
the lower wall Nusselt number caused by pulsating condi-
tions appeared to be smaller than in the laminar case.
Anther study on the effect of pulsation on laminar heat
transfer has been published by Chang and Tucker [19],
where they address the problem of laminar flow around a
sharp 180� bend. In order to enhance heat transfer, they
placed a thin fin right before the bend so as to achieve a
self-sustained oscillatory separated flow region. In their
conclusions, they stated that these self-sustained oscilla-
tions cause a substantial reduction in reattachment length
and, accordingly, a sizable increase in the local Nusselt
number. Another reference worth noticing in this context
is the study by Yoshioka et al. [20]. In this work, the
authors pointed out that the evolution of organised vortex
motion behind a back-step in the turbulent regime is
strongly dependent on the imposed inlet perturbation.

The work presented in this paper differs from previous
ones because of three main aspects: (a) we consider the flow
of water having temperature dependent viscosity and ther-
mal conductivity (this is important because water viscosity
changes by a factor of 3 in the range from 293 K to 353 K
typical of many industrial applications), (b) we specifically
search for the pulsation amplitudes and frequencies that
maximise heat transfer behind the step and (c) we present
the resonant behaviour of the Nusselt number as a function
of the pulsation parameters. Concerning the organisation
of the work presented hereafter, the chapters that follow
are: problem description, governing equations, boundary
conditions, spatial and temporal discretisation, validation,
results, sensitivity of the results and conclusions.
2. Problem description

We study the effect that forced flow pulsation has on the
heat transfer rate behind a backward facing step in the 2-D,
laminar incompressible flow regime. The non-dimensional
geometry of the problem is shown in Fig. 1. Distances
are rendered dimensionless by using the hydraulic diameter
of the inlet channel. All walls are adiabatic except a portion
of length L = 5 on the lowest wall downstream of the step
where temperature is prescribed. In this way we isolate the
effect that we are looking for, and we do not have interfer-
ence from thermal effects caused by other walls.

Our cooling fluid is water and we assume that it enters
the computational domain at the ambient temperature of
293 K. Wall temperature at the lowest wall downstream
of the expansion is 353 K. These two temperatures repre-
sent a typical situation found in electronics systems cooling
applications. To have a continuous dependence of viscosity
and thermal conductivity on temperature, we have interpo-
lated the experimental data provided by Incropera and
Dewitt [5]. The functions that we use are:
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l ¼ l0

l293 K

¼ 1� 5:646 � ðT � 1Þ þ 12:259 � ðT � 1Þ2 ð1Þ

k ¼ k0

k293 K

¼ 1þ 0:786 � ðT � 1Þ þ 1:176 � ðT � 1Þ2 ð2Þ

where l0 and k0 are the dimensional dynamic viscosity ant
thermal conductivity, respectively. The dimensionless tem-
perature T is obtained by dividing the actual temperature
by the reference inlet temperature (293 K). Fig. 2 shows
the relations (1) and (2) and their comparison with the
experimental data provided in Ref. [5] in the range from
293 K (T = 1.0) to 353 K (T = 1.2).
3. Governing equations

Dimensionless equations of the problem are continuity,
x and y momentum and energy:
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Dimensionless variables are defined as follows:

u ¼ u0

u1
; v ¼ v0

v1
; P ¼ P 0

q1u2
1
; T ¼ T 0

T1
ð7Þ

x ¼ x0

Dh

; y ¼ y 0

Dh

; t ¼ t0u1
Dh

ð8Þ

where u, v, P, T, x, y and t stand for horizontal and vertical
velocity components, pressure, temperature, horizontal
and vertical spatial co-ordinates and temperature, respec-
tively. Dotted variables are dimensional and the subscript
1 denotes unperturbed values upstream of the inlet. Dh

is the hydraulic diameter of the inlet channel. The Rey-
nolds number is defined as

Re ¼ q1u1Dh

l1
ð9Þ

Armaly et al. [1] used (2/3)umax to define the Reynolds
number, with umax being the maximum centreline velocity.
Since u1 ¼ ð2=3Þumax for a Poiseuille type inlet velocity
profile, it follows that we use the same definition as they
do. Prandtl number Pr ðl1cp1=k1Þ is also defined by using
upstream values. l and k appearing in Eqs. (4)–(6) are ta-
ken from the relations (1) and (2).
In the regime that we consider, flow topology depends
strongly on the Reynolds number. For instance, for a step
height of 0.5 in steady flow (see Fig. 1), Armaly et al. [1]
reported that the reattachment length is 1.44 and 3.23 for
Reynolds 100 and 389, respectively. In our case, we have
temperature variations of the order of 80 K in the flow field
(form 293 K to 353 K) and this causes local viscosity (and
local Reynolds number) to change by a factor of the order
of 3. Then, we have a strong coupling via temperature of
Eqs. (4)–(6). Finally, we have not included the viscous dis-
sipation function in the energy equation because this term
is of the order of u2

1=ðRecp1T1Þ, that is negligible in our
case compared to the other equation terms.

Regarding the model described by Eqs. (3)–(6), we have
made two hypotheses that need to be justified. The first one
is to assume laminar behaviour even though the flow has
an oscillating nature. The second is related to the fact that
buoyancy terms are not included in the momentum equa-
tions. Transition of wall-bounded unsteady profiles has
been studied, among others, by Das and Arakeri [21], Akh-
avan et al. [22,23] and Hino et al. [24]. They have provided
criteria to ascertain the onset of transition in straight ducts
by using the Reynolds number ðRed0 Þ based on the Stokes
layer thickness d0 ¼ ð2m0=x0Þ1=2, where m0 is the fluid kine-
matic viscosity and x00 is the dimensional pulsation fre-
quency. It is to be noted that, as Das and Arakeri [21]
remark in page 263 of their work, vortex formation does
not always leads to turbulence. In particular, these authors
found that no transition to turbulence occurs for
Red0 6 1200. The criteria provided by Hino et al. [24] is
somewhat more restrictive and sets up the transition Rey-
nolds number in the range from 500 to 550. We have, in
our case, a sudden expansion so the above mentioned cri-
teria are not directly applicable. However, we could esti-
mate our range of Red0 and see how far we stand from
those critical values. As it will be mentioned in the next sec-
tion, we deal with hydraulic diameters and flow velocities
of the order of 450 lm and 0.22 m/s, respectively. Also,
we find that for these parameters, maximum heat transfer
occurs at pulsating frequencies of 537 rad/s (85 Hz) so, in
this case, we have Red0 ¼ 22 that is more than one order
of magnitude smaller than the critical values for transition.
In line with this reasoning, it is to be noted that in the
already mentioned work performed by Valencia and Hinoj-
osa [17] the flow was considered to be laminar as well.
Dimensionless buoyancy terms scale as Gr/Re2 where Gr
is the Grashof number. In our case, with inlet channel
height in the range from 100 to 200 lm, maximum temper-
ature differences of 60 K, and Re = 100, the ratio Gr/Re2

varies from 1.0e�3 to 1.0e�4, so we have not accounted
for this effect (as in Ref. [17]).
4. Boundary conditions

Before writing down the boundary conditions of the
problem, we first describe the solution of the unsteady
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Poiseuille flow in a 2-D channel. The governing equation of
this problem is
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ð10Þ

Solutions are sought as follows:

uðy; tÞ ¼ u1ðyÞ þ u2ðy; tÞ ð11Þ
oP
ox
¼ �a1 þ a1a2 cosð2pxtÞ ð12Þ

where x is the prescribed dimensionless frequency for the
pressure gradient and the product a1a2 is its amplitude.
Solution of system (10)–(12), see [25], is
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ia1a2ei2pxt
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where

w ¼ ði2pxReÞ1=2 ð16Þ
a ¼ ew=2 ð17Þ

Solution ((11) and (12)) is formally valid for a pulsating
flow inside an infinitely long 2-D straight channel so it
should not be used as the inlet boundary condition in our
back step problem. What we do is to retain the velocity
profile (11) and the control parameters x (frequency) and
a2 (amplitude) that define the pulsating flow, and relax
the pressure boundary condition so that it adapts itself to
both the velocity pulsation and back step geometry.
Accordingly, our boundary conditions are:

� Inlet

uðy; tÞ ¼ u1ðyÞ þ u2ðy; tÞ ð11Þ

where u1ðyÞ and u2ðy; tÞ are defined by relations (14)–
(17).

v ¼ 0 ð18Þ
o2P
ox2
¼ 0 ð19Þ

T ¼ 1 ð20Þ

Boundary condition (19) allows for a self-adapting time
variation of the pressure gradient at the inlet. Boundary
condition (20) assumes an isothermal incoming flow that
is consistent with Eqs. (3)–(6) and with the fact that the
inlet channel walls are adiabatic.Boundary condition
(11) pulsates, see relation (15), with the argument
2pxt. According to our definition of the dimensionless
variables, this argument is equal to 2pxt0u1=Dh, where
t0 is the dimensional time measured in seconds. If we
select a typical case, like the one mentioned in the intro-
duction with Dh = 450 microns and u1 ¼ 0:22 m/s, and
prescribe x = 0.1 (as we will show later, relevant heat
transfer enhancement occurs in the range x = 0.1 to
x = 0.2 for Reynolds 100) the time needed to complete
a full pulsating cycle is 0.02 s (50 Hz). That is, an exper-
iment could be realised by using an off-the-shelf recipro-
cating pump that oscillates at the grid frequency
(50 Hz), together with a frequency adaptor to sweep
for different values of x.
� Outlet

ou
ox
¼ ov

ox
¼ o2P

ox2
¼ oT

ox
¼ 0 ð21Þ

The formulation of outflow boundary conditions for the
incompressible Navier–Stokes equations when comput-
ing either external or internal flows is still a subject of
active research; see, for example, the work reported by
Olshanskii and Staroverov [26], Hasan et al. [27] and
Nordstrom et al. [28]. We have used, in the present
work, the approximate boundary conditions (21) that
assume that the flow is fully developed at the outlet sec-
tion. These conditions, that are admissible provided that
the outlet boundary is located far enough downstream,
have also been used by many researchers dealing with
internal unsteady flows. Three practical application
cases are, for example, those presented by Valencia
and Hinojosa [17], Kaiktsis et al. [29] and Wang and
Zhang [30]. Other approaches consist, for instance, on
the use of the so called ‘‘traction free” conditions, Wang
and Sheu [31], or setting to zero all second order deriv-
atives of the primitive variables, Chattopadhyay et al.
[11]. In any case, in the last section of this paper (sensi-
tivity of the results) we present some additional results
obtained by using a longer computational domain so
as to check that the outflow boundary condition (21)
does not influence the computed parameters.
� Solid walls

u ¼ v ¼ 0 ð22Þ
T ¼ T wall for 5 6 x 6 10; y ¼ 0 ð23Þ
oT
on
¼ 0 for any other wall ð24Þ

Pressure boundary condition at vertical or horizontal
walls is obtained by computing the momentum equa-
tions (4) or (5) with zero velocity and one-sided (into
the flow domain) derivatives. Pressure at the two corners
of co-ordinates (5, 0.5) and (5, 0), is obtained by com-
bining and solving Eqs. (4) and (5) along the direction
that bisects the corners (45� in our case).
5. Spatial and temporal discretisation

Regarding spatial discretisation, we use the Finite Point
formulation developed by Mendez and Velazquez [32,33]
whose main features are:
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� Spatial derivatives are computed by using a least squares
approximation in a cloud of points.
� Second order Taylor polynomials are used as the

approximating functions

Uðx; yÞ ¼ k0 þ k1xþ k2y þ k3x2 þ k4y2 þ k5xy ð25Þ

where U stands for any flow variable and the ki’s are
computed in a least squares sense.
� Each cloud contains seven points (a central point plus

six neighbours). The closest point to the centrum maps
the 2-D space into four different sectors that span 90�
each, see Fig. 3. The first four neighbours are taken from
each of the four sectors by choosing the closest point to
the central one. The fifth and sixth points are chosen at
random from two of the sectors so that computation of
the spatial derivatives does not favour any particular
direction in the x–y plane.

We use a Cartesian grid in the work described in this
paper, so we could have chosen a far simpler centred finite
difference numerical algorithm. However, since we have
future applications in mind where the implementation of
Cartesian grids is no longer possible, we decided to use a
Finite Point scheme from the outset. These schemes are
attractive for practical industrial applications because they
are very flexible from the geometry modellisation point of
view and, also, because they are well suited to deal with
moving surfaces. The reason is that clouds of points may
penetrate each other without the compatibility constrains
required by either finite element or finite volume schemes.

The solver has been extensively validated for different
configurations (circular and square cylinders at an angle
of attack, and steady-state back steps) for different Rey-
nolds numbers in the vortex shedding laminar regime. In
particular, we compared our computed global flow param-
eters (drag, lift and Strouhal number) with those reported
in the literature [32]. Also, we performed a dedicated exper-
imental campaign in a low Reynolds number wind tunnel
to validate solver results with regard to time-averaged local
flow variables (velocity profiles) and rms values in the
unsteady wake behind a square cylinder [33].

Regarding the time integration that we use in the present
work, we deviate from the one reported in [32,33]. We have
Fig. 3. Set-up of a typical cloud of points.
now used the standard implicit pseudo-compressibility
approach as described by Tannehil [34], instead of the
explicit relaxation-based pseudo-compressibility formula-
tion developed in [32,33]. The reason is that the strong
unsteady effects that are felt all over the computational
domain in the case of a pulsating internal flow are com-
puted more accurately by using an implicit time integration
scheme. Some examples of the practical application of this
method have been published by Kiris and Kwak [35].

In particular, the equations that we integrate are:
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where b is the pseudo-compressibility parameter that we
take it to be 200, see [32,33,35,36]. For each physical time
step Dt, Eqs. (26)–(29) are iterated in pseudo-time Dt� until
joP=ot�j; jou=ot�j; jov=ot�j and joT=ot�j are smaller that a
certain prescribed value, thereby reverting to the solution
of the original set of Eqs. (3)–(6).

Integration in pseudo-time is carried out by using a sec-
ond order Crank–Nicholson scheme. For instance, if Eq.
(27) is re-written in symbolic form as

ou
ot�
þ ou

ot
¼ RHS�eq27f g ð30Þ

where RHS_eq27 stands for the right hand side of Eq. (27),
the time integration procedure at each point is formulated
as follows:

ukþ1 � uk

Dt�
þ uk � uo

Dt
¼ 1

2
RHS�eq27f gk þ fRHS�eq27go

h i

ð31Þ

where superscript o marks the initial time in the pseudo-
time integration loop, and superscript k denotes the inter-
mediate pseudo-time instants. Values of the physical Dt

and pseudo-time Dt� increments, for a given grid and flow
parameters, are chosen following the guidelines of the sta-
bility analysis performed by Peyret [36].

Keeping in mind the future applications that we
have already referred to, we have implemented artificial
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dissipation terms in our numerical scheme. In particular,
both second and fourth order terms have been used in
the continuity equation (26), and fourth order terms in
the momentum and energy equations (27)–(29). The imple-
mentation of these terms effectively changes the order of
the equations (they cause them to become fourth order),
so higher order boundary conditions are implemented for
the artificial dissipation terms. This specific computational
aspect is described in Refs. [32,33].
6. Validation of the numerical algorithm

We have used the experimental results provided by Arm-
aly et al. [1] to validate our solver both at the local and glo-
bal levels in the adiabatic case. In particular, we computed
the steady-state reattachment bubble length behind the step
for Reynolds 100 and 389, and found it to be 1.40 and 3.05,
respectively. Armaly et al. [1] reported experimental values
of 1.44 and 3.23, so our deviations are in the range of 2–
5%. Our Cartesian grid contained 32,051 points with a
spacing of Dx ¼ Dy ¼ 0:2, so it is to be expected that devi-
ations between numerical and experimental results grow
along with the Reynolds number. The computational and
physical parameters that we used were: Dt� ¼ 2:5e�4,
Dt ¼ 2:5e�4, b = 200, and Pr = 6.62. The fact that walls
were kept adiabatic effectively decoupled the energy equa-
tion from the others, although we computed it so as to keep
the same numerical scheme. Regarding local values of the
variables, Fig. 4 shows the comparison between computed
and measured [1] local velocity profiles at two sections
Fig. 4. Comparison between computed (–) and experimental (-�-) local velocit
step.
downstream of the step for the two above mentioned Rey-
nolds numbers.
7. Sensitivity of the results with regard to the computational

parameters

In this section, we address the sensitivity of the results
obtained with regard to (a) spatial discretisation, (b) tem-
poral discretisation, (c) pseudo-compressibility parameter
and (d) length of the computational domain. To address
aspects (a)–(c), we have carried out a series of computa-
tions (defined in Table 1) for a baseline unsteady case
with x = 0.40 and a2 ¼ 1:50 that is a critical one from
the numerical stability point of view since it has a large
pulsation frequency and a large pressure gradient param-
eter. To assess the sensitivity we have chosen three figures
of merit: the time-averaged Nusselt number in the region
5 6 x 6 7 (see Figs. 1 and 5), the maximum local Nusselt
number in the same region, and the minimum reattach-
ment length of the recirculation region behind the step
along the pulsating cycle. The first two parameters are
related to the energy equation while the third concerns
the flow topology.

For all cases, step height H was taken to be 0.5, and Pra-
ndtl and mean Reynolds number at the inlet section 6.62
and 100, respectively. Water was flowing in at 293 K and
wall temperature at the horizontal portion downstream
of the step (see Fig. 1) was 353 K (T = 1.2). The definition
of the local time-dependent Nusselt number Nux is as
follows:
y profiles at Reynolds 100 and 389 at different sections downstream of the



Fig. 5. Location of points A, B and C inside the computational domain.

Table 1
Cases computed to analyze sensitivity of results

Parameters Case key

I II III IV V VI VII

x 0.40 0.40 0.40 0.40 0.40 0.40 0.40
a2 1.50 1.50 1.50 1.50 1.50 1.50 1.50
Dx;Dy 2.0e�2 3.3e�2 1.2e�2 2.0e�2 2.0e�2 2.0e�2 2.0e�2
Points in the domain 32,051 11,731 81,281 32,051 32,051 32,051 32,051
Dt;Dt� 2.5e�4 2.5e�4 2.5e�4 1.2e�4 6.2e�5 2.5e�4 2.5e�4
b 200 100 200 200 200 100 150

Average Nusselt 5 6 x 6 7 7.48 6.98 7.50 7.41 7.38 7.58 7.52
Maximum local Nusselt 11.02 10.00 11.16 10.96 10.92 11.29 11.11
Minimum reattachment length 1.34 1.30 1.33 1.34 1.34 1.32 1.34
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NuxðtÞ ¼
hxðtÞDh

kwall

ð32Þ

where hxðtÞ is local convection coefficient. Since Dx ¼ Dy in
our Cartesian grid, the local Nusselt number could be writ-
ten as

NuxðtÞ ¼
Dh

Dy0
T 0wall � T 0wallþ1ðt0Þ

T 0wall � T 01
¼ 1

Dy
T wall � T wallþ1ðtÞ

T wall � 1
ð33Þ

where T wallþ1ðtÞ stands for the dimensionless temperature at
the grid point located next to the wall along the normal
direction. The time-averaged Nusselt number, see relation
(34) was computed in a region of length 2 right behind
the step, see Fig. 5. The reason for this choice is that, for
this step height and Reynolds number, the re-circulating re-
gion length in the adiabatic steady-state case is 1.40 so, in
this way, we cover the recirculation bubble length.

Nuaverage ¼
Z t¼tc

t¼0

1

2

Z x¼7

x¼5

Nux dx
� �

dt ð34Þ

where tc is the dimensionless time associated with a full pul-
sating cycle.

Regarding spatial discretisation, we have generated
three computational domains. The baseline case I had
32,051 points with Dx ¼ Dy ¼ 0:02, while case II had
11,731 points and Dx ¼ Dy ¼ 0:03333, and case III was
modelled with 81,281 points and Dx ¼ Dy ¼ 0:0125. It
was not possible to compute case II with the same
pseudo-compressibility parameter b = 200 of cases I and
III. The reason is that the larger values of Dx and Dy did
not allow it because of numerical stability reasons. Never-
theless, the results given in Table 1 show that changing Dx

and Dy from 3.33e�2 to 2.00e�2 and to 1.25e�2 caused
the time-averaged Nusselt number to vary from 6.98 to
7.48 and 7.50, respectively. That is, successive variations
of 40% and 38% in Dx and Dy generated successive changes
in the time-averaged Nusselt number of 7% and 0.3%,
respectively. Similar results are observed for the maximum
local Nusselt number and the minimum recirculation
region reattachment length, so we could conclude that
the results were converged with regard to the spatial
discretisation.

Concerning time discretisation, we computed cases IV
and V with Dt ¼ Dt� ¼ 1:25e� 4 and Dt ¼ Dt� ¼ 6:25e�
5, while the baseline case I had Dt ¼ Dt� ¼ 2:50e�4. That
is, see Table 1, dividing the time steps by a factor of 2
and 4 caused the time-averaged Nusselt number to change
from 7.48 to 7.41 and 7.38, respectively. That is, deviations
in the computed result were 0.8% and 0.4%, respectively.
Since a similar trend was observed regarding the maximum
local Nusselt number and the minimum reattachment
length, we could conclude that the results were also con-
verged with regard to the time discretisation. Finally we
carried out the same baseline computation (b = 200) with
b = 150 (case VII) and b = 100 (case VI). In this case, vari-
ations in the time-averaged Nusselt number (7.58–7.52 and
to 7.48) were of the order of 0.8% and 0.4%, respectively. A
similar behaviour was observed for the other two figures of
merit and, accordingly, we could say that the results are
also converged with regard to the pseudo-compressibility
parameter b.

Aspect (d): length of the computational domain, is
related to the justification of the approximate boundary
conditions (21) at the outlet section. In all computations
presented so far, the outflow section is located 10 dimen-
sionless units downstream of the step that has a non-
dimensional height of 0.5 (aspect ratio equal to 20). We
have now performed an additional computation of another
baseline case with x = 0.15 and a2 ¼ 1:50 by enlarging the
computational domain by an extra 5 dimensionless units
(aspect ratio equal to 30) and keeping all other computa-
tional parameters unchanged. In this case, the number of
points that we used was 44,801. It is to be noted that the
aspect ratio used in the work by Valencia and Hinojosa
[17] was 10. We have chosen these pulsation parameters
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because, as it will be shown in the next section, they pro-
vide maximum heat transfer enhancement. The maximum
local Nusselt number that we have computed by using
the longer domain was 16.56, while we obtained 16.42 with
the standard domain. Regarding the space and time-aver-
aged Nusselt number, we have now obtained the value of
8.36 while we computed 8.41 in the baseline case. That is,
differences were always less than 1%.
8. Results

We have computed a series of cases with different values
of the dimensionless forcing frequency x and pressure gra-
dient amplitude parameter a2 at the inlet section. Step
height H, and inlet Prandtl and Reynolds numbers were
0.5, 6.62 and 100, respectively. Definition of the computed
cases is shown in Table 2, where the minimum and maxi-
mum y-averaged inlet Reynolds number is given to provide
an idea of the amplitude of the mass flow variation. Again,
as in the previous section, water was flowing in at 293 K
and wall temperature downstream of the step was 353 K
(T = 1.2). The results obtained are shown in Fig. 6. Three
curves are presented in the upper sub-plot that correspond
to different values of parameter a2 that controls the ampli-
tude of the pressure gradient at the inlet (see Table 2). Fre-
quency of the pulsation is given in the x-axis while the
space–time-averaged Nusselt number is presented in the
y-axis. The distinctive feature that could be observed is that
there is an enhancement of the heat transfer rate in the
vicinity of the frequency x = 0.15. Away from this reso-
Table 2
Definition of computational cases

Case key x a2 d Remin Remax

01 0.000 0.000 0.000 100 100
11 0.100 0.250 0.251 87 113
12 0.125 0.250 0.251 89 111
13 0.150 0.250 0.252 90 110
14 0.175 0.250 0.252 91 109
15 0.200 0.250 0.251 92 108
16 0.250 0.250 0.252 94 106
17 0.400 0.250 0.251 96 104

21 0.100 0.750 0.752 60 140
22 0.125 0.750 0.752 66 134
23 0.150 0.750 0.754 71 129
24 0.175 0.750 0.753 75 125
25 0.200 0.750 0.753 77 123
26 0.250 0.750 0.752 81 119
27 0.400 0.750 0.751 88 112

31 0.100 1.500 1.503 20 180
32 0.125 1.500 1.505 32 168
33 0.150 1.500 1.512 42 158
34 0.175 1.500 1.510 49 151
35 0.200 1.500 1.507 54 146
36 0.250 1.500 1.509 63 137
37 0.400 1.500 1.510 76 124
41 0.150 2.300 2.318 10 190

Fig. 6. Upper sub-plot: computed time-averaged Nusselt number versus
pulsating frequency for three different values of the a2 parameter in the
variable properties fluid hypothesis. Lower sub-plot: comparison between
results obtained by assuming variable and constant fluid properties for the
case a2 ¼ 1:5.
nant frequency, the average Nusselt number decreases both
in the direction of lower and higher frequencies. The
steady-state result (x = 0.0) is also presented for the sake
of completion. The curves move up in the direction of
higher heat transfer rates for larger values of the inlet pres-
sure gradient parameter. In the case x = 0.15 and a2 ¼ 1:5,
the Nusselt number (8.41) that is 44% higher than the in the
steady case (5.83).

The lower sub-plot of Fig. 6 shows, for the case a2 = 1.5,
the results obtained by assuming that water is an ideal fluid
with constant viscosity and thermal conductivity. Compar-
ison with the results obtained after the variable properties
assumption is also given in the same sub-plot. The differ-
ences are of the order of 15% in the region where Nusselt
number resonance is maxima (co in the range from 0.1 to
0.2). We think that the reason is that water viscosity
decreases markedly when the temperature goes up and,
therefore, the local Reynolds number in the vicinity of
the heated wall is larger than in the ideal case.



Fig. 7. Computed time-averaged Nusselt number versus a2 for the
pulsating frequency x = 0.15.

Fig. 8. Time evolution of u and v at points A, B and C for case 33.
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The behaviour shown in both sub-plots of Fig. 6 resem-
bles the typical response of a resonating dynamical system
to an externally applied oscillating force. Fig. 7 shows the
Nusselt number as a function of the inlet pressure gradient
for the resonating frequency x = 0.15. There, it could be
observed that the heat transfer rate does not grow linearly
along with the a2 parameter; i.e.: the second derivative of
response amplitude is negative with regard to the ampli-
tude of the forcing parameter, like in the case of a many
damped resonating dynamical systems.

For all computation cases presented in Table 2, the
time-dependent mass flow was monitored at 10 different
vertical sections located inside the computational domain
and the variations between each other were found to be less
than 1%. Also, for each case, we monitored the time evolu-
tion of the inlet pressure gradient, assumed a behaviour of
the type stated in relation (12), and computed an equivalent
a2 parameter that we have called d. This parameter d is also
given in Table 1 where it could be seen that its difference
with a2 is always smaller than 1%. This means that the inlet
boundary condition that we use resembles very closely the
ideal unsteady Poiseuille solution for a straight channel.

The behaviour presented in Figs. 6 and 7 suggests the
existence of a non-linear coupling of resonant nature
between thermal effects and Fluid Dynamics parameters.
This fact may allow for the application of some kind of
flow control, with frequency and amplitude of the inlet
pressure gradient acting as the control parameters. Even
though the Nusselt number enhancement (55%) in the
region right behind the step is not very large, this result
suggests that it may be possible to look for resonances in
problems that involve large recirculation regions with the
objective of improving, among others, the heat transfer
rate.

When looking at the results, one of the questions that
arise is whether different frequencies appear in the flow
field. In this regard, we have checked the time history of
all computed results and found no evidence of the existence
of frequencies other than the pulsating frequency. Fig. 8
shows the time evolution of u and v along a cycle at points
A (5.5, 0.25), B (5.5, 0.75) and C (6.5, 0.25), see Fig. 5, for
case 33, see Table 2, with x = 0.15 and a2 ¼ 1:5. The evo-
lution of the average velocity at the inlet section is also
shown for reference purposes in the figure. In this case,
the dimensionless time needed to complete a pulsating cycle
is 1=x ¼ 1=0:15 ¼ 6:67. Two features could be observed in
Fig. 8: (a) velocity profiles repeat themselves at the end of
the cycle, and (b) outside the recirculation region (point A),
horizontal velocity profiles (points B and C) follow qualita-
tively the pattern of the inlet profile.

The difference between pressure at points A, B and C,
and the average inlet pressure is shown in the upper part
of Fig. 9. The y-averaged inlet pressure gradient is also
shown in the figure as a frame of reference. Again, pressure
profiles repeat themselves at the end of the cycle and pres-
sure follows qualitatively the pattern set up in the pulsa-
tion. Finally, temperature evolution at the same points A,
B and C, is given in the lower plot of Fig. 9. In this case,
it is not straightforward to draw a relation with the inlet
velocity profile. In fact, the highest temperature at point
A, that is representative of the region closest to the step,



Fig. 10. Local Nusselt number iso-contours behind the step as a function
of the x co-ordinate and time along a cycle for case 33. The dashed (– – –)
line represents the recirculation region reattachment point as a function of
time.

Fig. 9. Time evolution of P and T at points A, B and C for case 33.
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is obtained towards the end of the cycle where inlet velocity
is smallest.

An overview of the local Nusselt number in the region
ð5 6 x 6 7Þ right behind the step as a function of the
dimensionless time ð0 6 t 6 6:67Þ along the pulsating
cycle (case 33) is presented in Fig. 10. The Nusselt num-
ber in the region very close to the step is low and nearly
insensitive to pulsation ð5 6 x 6 5:3;Nu 6 3; 8tÞ. How-
ever, further downstream, for instance at x = 6.5, the
local Nusselt number changes down from 5 up to 16
depending on the time instant. The reattachment point
of the recirculation region is also presented in this
Fig. 10. It could be observed that the region of the max-
imum local Nusselt number roughly follows the position
of the reattachment point. It is worth to notice, see Figs.
8–10, that the highest values ðNu P 14Þ are obtained
when the inlet pressure gradient is positive and velocity
is minimum. On the contrary, the Nusselt number is min-
imum ðNu � 5Þ when the inlet pressure gradient is most
favourable, and inlet velocity is near its maximum
ð1 6 t 6 2Þ. This fact suggests that the maximum heat
transfer rate is reached out of phase (approximately half
a cycle away) from the inlet conditions of largest velocity
and most favourable pressure gradient.

We think that the variation of the heat transfer rate is
connected to the changes in flow topology along the cycle.
Fig. 11 shows 10 equally spaced snapshots of the flow
streamlines for the same case 33 and a full pulsating cycle.
Time reads top-bottom left–right in Fig. 11. It is to be
noted that, in this case, up to four recirculation regions
appear in the flow field. In particular, a very large recircu-
lation region appears (and disappears) in the upper wall for
snapshots 7 and 8 (t = 4 and t = 5). The maximum size of
this region is 2.06 ð6:28 6 x 6 8:34Þ that is even larger than
the recirculation region located right behind the step, and
its presence coincides with the time span when the local
Nusselt number reaches its maximum (see Fig. 10). This
behaviour could be explained by the fact that, in this time
span and because of the large size of the upper wall recir-
culation bubble, deflection of the streamlines is largest
when they impinge the lower wall. That is, pulsation gener-
ates flow obstacles, large-size low-velocity regions that
appear and disappear periodically, that contribute to mod-
ify the streamlines pattern and the heat transfer rate.
Another approach to enhance mixing is, of course, to man-
ufacture grooves or other obstacles in the channels walls,
and this has been the subject of some recent studies [37–
39]. Since manufacturing of micro-structures in channels
walls might be costly, flow pulsation could be considered
as a potential candidate to generate fluid obstacles that
may enhance local mixing.

For a given pulsation frequency, the number and extent
of recirculation regions decreases for smaller values of the
a2 parameter. Fig. 12 shows, as in Fig. 11, 10 snapshots of
case 23 (see Table 2) with x = 0.15 and a2 ¼ 0:75. Now, the
maximum number of recirculation regions is three and
their size is much smaller than in the previous case.



Fig. 11. Snapshots of the streamlines for case 33 along a pulsating cycle. Time reads top-bottom left-right. Snapshots are equally spaced in time.

Fig. 12. Snapshots of the streamlines for case 23 along a pulsating cycle. Time reads top-bottom left-right. Snapshots are equally spaced in time.
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Fig. 13 presents the time evolution of flow topology for
case 13 (see Table 2) with x = 0.15 and a2 ¼ 0:25 and, in
this case, only one slowly contracting and expanding recir-
culation region is present. Snapshots of case 37 (see Table
2) with x = 0.4 and a2 ¼ 1:5 are presented in Fig. 14. These
results, that should be compared to those presented in
Fig. 11 show that increasing frequency from 0.15 (the res-
onant one) to 0.4 while keeping a2 constant causes the flow
field to exhibit a simpler structure. In this case, only two
recirculation regions are present and the one appearing in
the upper wall is much smaller than the one that is gener-
ated during the resonant pulsation (case 33). As a sum-
mary, it could be said that the two control parameters x
and a2 exert a large influence on the topology of the flow
field and that, in turn, this topology controls the heat trans-
fer rate behind the step.



Fig. 13. Snapshots of the streamlines for case 13 along a pulsating cycle. Time reads top-bottom left-right. Snapshots are equally spaced in time.

Fig. 14. Snapshots of the streamlines for case 37 along a pulsating cycle. Time reads top-bottom left-right. Snapshots are equally spaced in time.
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An overview of three snapshots of the temperature field
associated with case 33 is shown in Fig. 15. These temper-
ature snapshots (the dark grey shade signals the highest
temperature) correspond to the second, fifth and eighth
sub-plots of Fig. 11, respectively. In the two lower sub-
plots, it is possible to see how the large vortex located
downstream of the step entrains hot fluid from the wall
region and how, when the vortex disappears, the hot fluid
is convected away (see upper plot).

Finally, a comment should be made on the commonal-
ity that exists between the results obtained in this paper
and the results reported by other researchers in the turbu-
lent flow regime. Yoshioka et al. [20] have studied the tur-
bulent flow topology behind a back-step when the



Fig. 15. Temperature snapshots of case 33. Time reads top-bottom.
Snapshots are equally spaced in time.
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incoming flow is subjected to a periodic perturbation. The
perturbation consisted on the implementation of an
alternating suction/injection (inclined 45� relative to the
x-axis) through a slit open right on the step edge. The
authors found that the perturbation that has the largest
effect on the reattachment length has a Strouhal number
(based on the step height and mean inlet velocity) close
to 0.2. This value falls approximately within the range
reported by other researchers that are referenced in [20].
In our case, we obtain maximum heat transfer enhance-
ment for a Strouhal number (measured by using the same
convention as Yoshioka et al. [20] close to 0.1). A factor
of 2 exists between those two critical Strouhal numbers,
but it should be borne in mind that the problems also
have large differences; namely: (a) the Reynolds number
in the turbulent flow studies is about 100 times larger
than in our case, (b) the nature of the perturbation is very
different, and (c) our velocity profile is parabolic right
before the step, while it is nearly flat in the turbulent flow
studies. Nevertheless, both problems have in common the
existence of a critical Strouhal number that markedly
affects some fluid dynamics related aspects.

9. Conclusions

The following conclusions could be drawn after the
completion of the work:

� It has been found that forced flow pulsation in the inlet
duct of a 2-D back step channel modifies substantially
flow topology in the low Reynolds number regime. In
particular, instead of a single recirculation bubble
anchored to the step, several separated flow regions
appear and disappear periodically as the pulsating cycles
proceed. Some of the separated flow regions appear in
the upper wall of the channel. The recirculation region
behind the step undergoes a dynamic process in which
a single vortex expands, breaks into a pair of vortices,
contracts, and expands again. This dynamic behaviour
is controlled by two parameters: frequency of the veloc-
ity pulsation and amplitude of the oscillating pressure
gradient at the inlet section.
� These periodic changes in the flow topology enhance

convective mixing and, accordingly, increase the local
Nusselt number in the region located right behind the
step. We have computed the Nusselt number in a hori-
zontal region whose length is four times the step height
at Reynolds 100, and found that the time-averaged Nus-
selt number could become 55% larger than in the steady-
state case. This heat transfer enhancement is the
maximum that could be obtained without having flow
reversal at either the inlet or outlet flow sections.
� This Nusselt number enhancement appears to be of a

resonant nature. For a given inlet pressure gradient
amplitude, its reaches it maximum for a specific pulsat-
ing frequency and decreases for both higher and lower
values of the frequency. For a given frequency, the Nus-
selt number is higher the larger is the inlet pressure gra-
dient amplitude.
� We found that heat transfer enhancement is larger when

it is assumed that water has temperature dependent vis-
cosity and thermal conductivity. The reason could be
that local Reynolds numbers in the vicinity of the heated
wall are larger when considering this real fluid behaviour.
� The behaviour that has been described in the previous

paragraph suggests that it might be feasible to exert
some kind of flow control by forcing unsteady behav-
iour on a reference steady regime. This, of course, might
not happen for any type of flow; indeed, published data
seems to point out that flow pulsation in straight chan-
nels does not influence the time-averaged Nusselt num-
ber. That is: the existence of resonant effects may
require the presence of a suitable geometric configura-
tion. In this context, it is worth to note that, at Reynolds
100, the resonant frequency x = 0.15 is close to the typ-
ical vortex shedding Strouhal number (of the order of
0.15–0.20, depending on the blockage ratio) associated
with the flow around a square cylinder.
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